Acoustics/Sound

Benefits of Nature-Based Experiences (03-27-20)

Weir reports on the findings of numerous studies that have established the psychological value of nature-based experiences.  The material related to experiencing nature while indoors have the widest applicability. Weir states, for example, that “Berman and colleagues found that study participants who listened to nature sounds like crickets chirping and waves crashing performed better on demanding cognitive tests than those who listed to other sounds like traffic and the clatter of a busy café. . . . .

Sound and Balance (03-18-20)

Researchers have determined that what we hear influences our balance.  The investigators report in a literature review published in JAMA Otolaryngology-Head & Neck that “What people hear and do not hear can have a direct effect on their balance. . . . . ‘This study found that the sounds we hear affect our balance by giving us important information about the environment. . . . ‘ said senior author Maura Cosetti, MD. . . . people had more difficulty staying balanced or standing still on an uneven surface when it was quiet, but had better balance while listening to sounds. . . .

Ramifications of Silence (03-17-20)

Pfeifer and Wittmann investigated how humans think when a space is silent.  They report that “Research on the perception of silence has led to insights regarding its positive effects on individuals. We conducted a series of studies during which individuals were exposed to several minutes of silence in different contexts. Participants were introduced to different social and environmental settings, either in a seminar room at a university or in a city garden, alone or in a group. . .

Alarms With Benefits (02-03-20)

McFarlane and colleagues have investigated, via an online survey, the sorts of sounds that alarms to wake people up can make and the repercussions of awakening to various sounds. Their findings are generally relevant to people working on creating sounds that alert listeners.  The McFarlane-lead team reports that “Sleep inertia is a potentially dangerous reduction in human alertness and occurs 0–4 hours after waking. . . .  The goal of this research is to understand how a particular sound or music chosen to assist waking may counteract sleep inertia. . .

Sound/Video Pairings (11-25-19)

Samermit and colleagues have determined that pairing disliked sounds (such as “nails scratching a chalkboard”) with videos presenting a more positive explanation for that sound (such as “someone playing a flute”) reduces the negative implications of hearing those sounds.  They report that “We propose that cross-sensory stimuli presenting a positive attributable source of an aversive sound can modulate negative reactions to the sound.”  The researchers utilized “original video sources (OVS) of eight aversive sounds (e.g., nails scratching a chalkboard) . . .

Classroom Acoustics (11-21-19)

Astolfi and colleagues investigated the effects of classroom acoustics on the educational experiences of young people, age 6 to 7.  They determined that findings of the study suggest that long reverberation times, which are associated to poor classroom acoustics as they generate higher noise levels and degraded speech intelligibility, bring pupils to a reduced perception of having fun and being happy with themselves.

White Noise Boosts Hearing (11-14-19)

Christensen, Lindén, Nakamura, and Barkat determined that white noise can improve ability to hear other sounds and their work is published in Cell Reports.  The investigators found via studies with mice that “With a background of continuous white noise, hearing pure sounds becomes even more precise. . . .the more precisely we can distinguish sound patterns, the better our hearing is. But how does the brain manage to distinguish between relevant and less relevant information – especially in an environment with background noise? . . .

Alarming Sounds (10-09-19)

Arnal and teammates probed what sorts of sounds alarm humans.  They found that “One strategy, exploited by alarm signals, consists in emitting fast but perceptible amplitude modulations in the roughness range (30–150 Hz). . . . Rough sounds synchronise activity throughout superior temporal regions, subcortical and cortical limbic areas, and the frontal cortex, a network classically involved in aversion processing.”  Rough sounds from 40-80 Hz are especially unpleasant for us to hear.  The 40-80 Hz range is where the frequencies of babies crying, human screams, and many alarms are found.

Pages

Subscribe to RSS - Acoustics/Sound